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Abstract

A new formulation is presented for sensitivity analysis of a coincident critical load factor. Only symmetric elastic
structures subjected to symmetric loads are considered, and sensitivity coefficients are found for a symmetric design
modification which corresponds to a minor imperfection. It is shown that the formulation for sensitivity analysis of
multiple linear buckling load factor can be successfully combined with that of nonlinear buckling to develop a for-
mulation for coincident nonlinear buckling load factor. The proposed formulation is verified by analytical examples of
simple spring—bar systems. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sensitivity of buckling load factor of an elastic structure with respect to an asymmetric imperfection has
been extensively investigated and general forms of imperfection sensitivity analysis have been presented for
distributed parameter structures (Koiter, 1945) and for finite dimensional structures (Thompson, 1969;
Thompson and Hunt, 1973). It has also been pointed out that imperfection sensitivity can increase due to
interaction of buckling modes if two or more critical points coincide or are closely spaced (Ho, 1974;
Huseyin, 1975; Thompson and Hunt, 1973; Hutchinson and Amazigo, 1967).

Most of all the studies on sensitivity analysis of buckling load factor, however, concern reduction factor
of the critical load due to asymmetric imperfection that is classified as major imperfection. Evaluation of
sensitivity with respect to a major imperfection is very important to estimate maximum load factor of a
structure that has an unavoidable manufacturing or construction error.

In the engineering practice, structures to be built often have symmetry properties, and variation of
critical load factor with respect to a symmetric design modification is to be evaluated in the process of
redesign or design modification. For a symmetric structure subjected to a set of symmetric loads, which is
called symmetric system for brevity, symmetric design modification is conceived as minor imperfection.
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Roorda (1968) derived analytical formulation of sensitivity analysis of bifurcation load factor with respect
to a minor imperfection, and showed that the sensitivity coefficient is bounded for such an imperfection.
Ohsaki and Uetani (1996) presented three approaches for sensitivity analysis of bifurcation load factors of
symmetric systems, one of which is an explicit form of the formulation by Roorda (1968).

In the field of optimum design, on the other hand, extensive research has been made for computing
sensitivity coefficients of linear buckling load factor with respect to design variables such as stiffnesses and
nodal locations. Such sensitivity coefficients are called design sensitivity coefficients which are used for
optimum design and simply for redesigning process. Note that imperfection sensitivity and design sensi-
tivity are virtually identical, and same formulations should be developed. Ohsaki and Nakamura (1994)
incorporated the method of imperfection sensitivity analysis for finding optimum designs for specified limit
point load factor.

It is well known that optimum designs for specified linear buckling load factor often have multiple or
repeated buckling load factors that are nondifferentiable; only directional derivatives or subgradients
(Mistakidis and Stavroulakis, 1998) can be defined (Masur, 1984; Haug et al., 1986). Several algorithms
have been presented for design sensitivity analysis of multiple buckling load factors (Seyranian et al., 1994),
and optimum designs have been obtained for plates and shells under constraints on linear buckling load
factor. It has been well discussed in the field of stability analysis that optimization for nonlinear buckling
results in coincident buckling that may dramatically increase imperfection sensitivity (Huseyin, 1975;
Thompson and Lewis, 1972). Ohsaki (2000) demonstrated that optimization does not always increase
imperfection sensitivity even if the optimal design has coincident critical points.

In this paper, a new formulation is presented for sensitivity analysis of coincident buckling load factor of
symmetric systems with respect to symmetric design modification which is classified as minor imperfection.
The validity of the proposed formulation is demonstrated through the examples of two- and three-degree-
of-freedom spring-bar systems.

2. Coincident critical points

Consider an elastic structure discretized by using the finite element method. The vector of proportional
loads P is defined by the vector P’ of loading pattern and the load factor A as

P = AP". (1)

The vector of nodal displacements is denoted by Q = {Q;}. The total potential energy is a function of Q
and A which is written as IT5(Q, A).

Let S; denote partial differentiation of ITS with respect to Q;. Stationary condition of IT® with respect to
0; leads to the following equilibrium equations:

=0, (i=1,2..../), 2)

where f'is the number of degree of freedom of displacements. The path of equilibrium state that originates
the undeformed initial state is called fundamental equilibrium path.

The second-order partial differential coefficient of ITS with respect to Q; and Q; is denoted by S;;. The
matrix S = [Sj] is called stability matrix or tangent stiffness matrix. The rth eigenvalue A"(A) and eigen-
vector @"(A) of S along the fundamental equilibrium path are defined by

Syl = AP, (i=12....0) 3)

where ¢ is the ith component of ¢, and the summation convention is used only for the subscripts; the
superscripts are not summed. The eigenmode @ is normalized by
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¢;¢; = 1. 4)

An equilibrium state that satisfies Eq. (2) is stable if the lowest eigenvalue A' is greater than 0, and is
unstable if A' < 0. The value of A corresponding to 2' = 0 is called buckling or critical load factor, and such
an equilibrium state is called critical point. In the following, the values corresponding to the critical point is
indicated by a superscript ( )°. The critical points are classified into a limit point and a bifurcation point
which are characterized by d);lSjA # 0 and d)lejA = 0, respectively, where ( ), indicates partial differenti-
ation with respect to A.

Consider a case where S has multiple zero eigenvalues, and the remaining eigenvalues are positive. This
type of critical point is called coincident critical point. Let m denote the multiplicity of the fundamental zero

eigenvalues. In this case, an arbitrary linear combination of @ («=1,2,...,m) satisfies the following
equation:

D Syad =0 (i=1,2,..../), (5)

a=1
where a, (0 =1,2,...,m) are the coefficients and « and f are used in the following for the values corre-
sponding to zero eigenvalues. Eq. (5) is written simply as

Sij‘//jzo (i:1727"'af)7 (6)
where

vy =D ady (7)

3. Sensitivity of coincident critical load factor with respect to minor imperfection

Consider a structure which has a plane or an axis of symmetry and the applied proportional loads are
also symmetric. In this case, the deformation along the fundamental equilibrium path is symmetric, and this
type of system is called symmetric system for brevity. We consider a case where the structure reaches a
bifurcation point; not a limit point.

Let b denote the vector of design variables that represents the element stiffnesses such as the thickness of
a plate element and the cross-sectional area of a truss element. Sensitivity analysis is carried out for a
symmetric system considering symmetric design modification which is defined by a mode vector b®. A set of
symmetric systems in the vicinity of the initial system by is defined by using a design parameter & as

b = by + &b’ (8)

Note that a symmetric design change of a symmetric system corresponds to a minor imperfection, and the
sensitivity coefficients with respect to a minor imperfection are bounded (Roorda, 1968). The critical point
of an imperfect system is also a bifurcation point if a minor imperfection is considered, whereas the critical
point may turn out to be a limit point for an asymmetric major imperfection.

Let Of denote the displacements at the critical point. The values Qf, A°, 2 and @ at the critical point
are functions of ¢ which are indicated by a hat as O°(&), A°(¢), 2 (&) and ¢ (¢). A hat is also used for other
quantities to indicate their dependence on ¢. In the following, all the variables are evaluated at the critical
point of the perfect system with ¢ =0, e.g., ¢ = 0¢(0), ¢;" = $7(0), and the argument ¢ is omitted for
brevity.

Various formulations may be possible for defining a symmetric system. Masur (1970) defined a com-
pletely symmetric system by the condition S,-jkqbe]qubZ’ = 0 for all the possible sets of three modes. This is a
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rather strong condition for symmetry. The terms semi-symmetry and individual symmetry are also used for
characterizing symmetricity of structures (Thompson, 1984; Huseyin, 1975).

In this paper, we consider a weaker condition for a structure with coincident buckling concerning the
prebuckling deformation and the modes corresponding to the vanishing eigenvalue. It is assumed here that
the prebuckling deformation is orthogonal to the buckling modes; i.e.,

07" =0 (a=1,2,...,m). )
Since the coincident critical point consists of bifurcation points,
S =0 (x=1,2,....m) (10)

is satisfied. Note that the critical point can be an asymmetric bifurcation point under the condition that Eq.
(9) is satisfied.

An explicit differentiation with respect to ¢ is denoted by (7);; i.e., Of and A° are fixed during partial
differentiation with respect to . Differentiation of Egs. (2) and (6) as well as Eq. (4) for » = o with respect to
£ leads to

805 + Sic + 5445 =0, (11)
SO WS + Sy + Seds + SyasA° =0, (12)
¢ Py =0, (13)

where a prime indicates total differentiation with respect to £. Note again that summation convention is not
used for the superscripts.
By multiplying ¢;* to Eq. (11), the following relation is derived for o = 1,2,... m:

2OF G+ S + Sia A S = 0, (14)
where Eq. (3) has been used in the first term. The first term of Eq. (14) vanishes because A” =0. For the
case where the second term is not equal to 0 for & = 1,2,...,m, the absolute value of A° should be infinity

because S;4¢S” in the third term is 0 at a bifurcation point. The imperfection such that S;:¢¢* = 0 is called
minor imperfection (Roorda, 1968). We consider a case where S;:¢* = 0 is satisfied for all the buckling
modes ¢;* (« =1,2,...,m). This type of imperfection is called completely minor imperfection in this paper.
It may be observed from Eq. (14) that the sensitivity coefficients of a coincident critical load factor are
bounded if a completely minor imperfection is considered.

The following relation is also derived for r =m + 1,m+ 2,..., f by multiplying ¢;" to Eq. (11).

2O P+ S+ Siu AP =0 (15)
where Eq. (3) has been used in the first term. The relation
Sk 05 W5 + Sy + SyapWsAC =0 (B=1,2,...,m) (16)

is derived by multiplying ¢ to Eq. (12), where ;¢ = 0 has been used.

The generalized displacement U, in the direction of ®7(0) is defined as

f ~ .
0= ¢ (0, (17)

J=1

where <f§l°f (0) is the ith component of @ of the perfect system which is normalized by Eq. (4) and the
orthonormality condition
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b(0) ¢ (0) = 3 (18)

is to be satisfied, where ;; is the Kronecker’s delta. Note that ¢(0) is used only for transformation of the
displacements and is fixed during differentiation with respect to &.
The relation between the displacements at the critical point is written as

f A .
o =) 0OUs, (19)
=1

where U7 is a temporary variable which does not appear in the final form. By multiplying qASf"(O) to Eq. (19)
and by using Egs. (18) and (19) may be inversely written as

Us = (0005 (20)
From Egs. (19) and (20), the relations between the sensitivity coefficients Qf/ and US are written as
S
o' =) U, (21)
=1
Us =47 (0)05 (22)

Note again that 431"(0) is fixed during differentiation. In the following, A;"(()) is simply written as ¢ because
all the variables are evaluated at the critical point of the perfect system.
By incorporating Eq. (22) into Eq. (15)

2T + St + Sy AT =0 (23)
forr=m+1,m+2,...,f are derived. From Egs. (9) and (20),

U,=0 (e=1,2,...,m), (24)

US=0 (x=1,2,...,m) (25)

are satisfied; i.e., the prebuckling deformation does not have components of the buckling modes corre-
sponding to ¢ = 0 for any symmetric system defined by the parameter £. Then the following relation is also
derived from Egs. (16) and (21):

s
D Sy U o5 + Syed 5 + Syad i A =0 (B=1,2,...,m). (26)

r=m+1

From Eq. (23), U is written as

~re | - r 5c e -
U:/:_F(Sli(bzc +S1AA ¢1) (r:m+1,m+2,,f) (27)
Incorporating Eq. (27) into Eq. (26), the following formulation of sensitivity coefficient is derived:
vo Vo e s Sudh Sy
A =;<Sf,-g¢fw,-— > e | (=12, (28)
r=m-+1

where u is independent of ¢ and is given as

LSy Siads f e
n= Z - }Lcrk ! - l'j/lqsiﬂlpj (ﬁ: 1,2,...,”’1)- (29)

r=m+1
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The coefficients a, for l// should be spec1ﬁed for computing A° from Eq. (28). It is shown in the example of
a spring-bar system that the value of A° calculated from Eq. (28) depends on the choice of a,. This is similar
to the situation for the multiple eigenvalues of the linear buckling problem. It is well known that the
multiple linear buckling load factors are nondifferentiable, and only directional derivatives or subgradients
(Mistakidis and Stavroulakis, 1998) can be defined. Accurate directional derivatives should be found if
sensitivity analysis is carried out for optimizing structures. Seyranian et al. (1994)) showed that the proper
choice of a, for computing the directional derivatives can be found by solving an eigenvalue problem.
Similar formulation is presented as follows for the nonlinear coincident bifurcation load factors.
By using Eqs. (7) and (28) is rewritten as

Gupa, = /AIC,Haﬁaq p=1,2,...,m), (30)

where

Zr m+1 l/k¢l)’t¢1j¢ S1§¢

A

Gy = gi/f(b([;id);j - (31)

er‘:m Si'k(z)cid);' CrS[AQSCV Cc JC
Hyp = S = Syad (32)

Note that Eq. (30) has an obvious solution a, = 0. In order to find a solution a, that does not form a null
vector, the sensitivity coefficients A° and a, are calculated as a pair of eigenvalue, 1 and eigenvector, V,
defined by

Gzlil//ﬁ:on,Ba,B (OC: 1,2,...,1’}1), (33)

where symmetricity of G,; and H,; has been used. Relation between directional derivatives and subgra-
dients is investigated in the following example of a two-degree-of-freedom system.

4. Illustrative examples

A two-degree-of-freedom spring-bar system is first considered for concisely illustrating the proposed
procedure. However, general applicability of the proposed formulations cannot be proved by this system,
because m = f is satisfied. Therefore a three-degree-of-freedom system is next used for the verification for
m<f.

4.1. A two-degree-of-freedom spring-bar system

Consider a two-degree-of-freedom system as shown in Fig. 1 (Chilver, 1967; Huseyin, 1975) which is
supported in the y-direction at nodes 1 and 4, and in x-direction at the center. Note that this system is
symmetric with respect to the y-axis. The generalized coordinates ¢; and ¢, are given so that the extensions
e, ey, e of the springs a, b, c are defined as

e. = 3L(q1 + q2), (34)
ev = 5L(q1 — ¢2), (35)
€. = qu (36)

and the rotation of the spring d is given as
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Fig. 1. A two-degree-of-freedom spring-bar system.

04 = sin"' 2¢5. (37)

The strain energy is assumed to be defined as

E,=34(@ + )" +B1(a1 +a2) +35C (a1 +a2)", (38)
Ey =341(q1 — ¢2)° +1Bi(q1 — ¢2)° + £Ci(q1 — )", (39)
Ee = 3424 + 8241 + 3Caq1 (40)
Eq =145(sin”" 205)° ~ LA5(443 + 843) = L4543 + 1Cadl, (41)

where 4, 4,, By, etc. are constants. The relative displacement v in the x-direction between nodes 1 and 4 is
written as

v=L[q; + 3¢ + (g} + 64743 + 943)]. (42)
Finally, the total potential energy V = E, + E, + E. + Eq — APv is a polynomial function of ¢; and ¢, as

V =1024) 4+ 42)q7 +1(24, + 43)q5 + L[(2B1 + B2)q] + 6B19145] + %£[(2C1 + Co)gi + 12Ciq7q5
+ (2C\ + G3)g3] — APL[(q] + 343) + Xq} + 64145 + 43)].- (43)

By successively differentiating 7 with respect to ¢, and ¢,, and by substituting the obvious solution
q1 = ¢» = 0 of the fundamental equilibrium path, the following relations are derived:
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S =24, + A4, —2APL, (44)
Sip =831 =0, (45)
Sy = 24 + A3 — 6APL, (46)
Sin = 2B, + By, (47)
S =0, (48)
Sy = 2B, (49)
S = 0. (50)
Note that this system is not completely symmetric. From Eqs. (44) and (46), the two critical load factors are
24, + 4
et o
S ) (52)
which have the same value if
44, + 34, — 43 = 0. (53)

The parameter 4, is chosen as imperfection parameter or design variable; i.e., £ = 4;. From (51) and (52),

the sensitivity coefficients of A°! and A% are written as
Acl/ —_ i ACZI — L
PL’ 3PL°

Suppose that A°! = A is satisfied. The two eigenvectors may be written as

wr={ml w={ml (55)

(54)

P12 P»
where Eq. (4) and pyp» — piapa1 # 0 are to be satisfied. Then Eq. (30) is written as

2 2(pupa +popn) | | a _ 2PLp}, + 6PLp7, 2PLp1po1 + 6PLp1»px»
2(pupar + p1apa) 2 a 2PLp11pa1 + 6PLp1opr» 2PLp3, + 6PLp3,

x{z}

It has been confirmed that the same results as Eq. (54) are obtained by carrying out eigenvalue analysis of
Eq. (56). Note that the package Maple V Release 5 has been used for symbolic computation, and the details
are omitted because use of large space for algebraic expressions should be avoided. For example, if we
chose (p11,p12) = (1,0) and (po1, p22) = (0, 1), Eq. (30) is reduced to

2 0 a T 2PL 0 ay
o et =20 i) &0
and Eq. (54) is immediately derived. In the example above, however, the terms of the summation in Eq. (28)
vanish because m = f = 2.

Fig. 2 illustrates the relation between the design parameter and the two critical load factors. It may be
observed from Fig. 2 that the sensitivity coefficient of A°' that is plotted by solid lines is discontinuous at

(56)
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A" Coincident buckling

0 Subgradient

Directional derivative

Critical load factor

N
»

A

Design variable

Fig. 2. Definition of directional derivative and subgradient.

the coincident critical point, and the directional derivatives may be defined as illustrated in Fig. 2. Note that
directional derivatives should be calculated to accurately estimate the variation of the lowest critical load
factor.

For the case of m = 2, the two eigenvalues are defined as the maximum and minimum values of the
Rayleigh’s quotient

R— Gaz/}aaa[)’ (58)

Haﬂaaaﬁ

which is derived from Eq. (30). The eigenvector defined by the linear combination of (p1, p12) = (1,0) and
(p21,p22) = (0,1) is written by using a parameter 7 as {y)°} = {sinz,cos¢}". Fig. 3 shows the relation be-
tween ¢ and R. It is observed from Fig. 3 that R is a smooth cyclic function of ¢, and the value of R for each
value of ¢ corresponds to a subgradient as illustrated in Fig. 2.

E N N N

L1

Q

b=

[P

S 213

2

=

2 13

5

“ ) | | |
0 1 2 3

Parameter t

Fig. 3. Relation between mode parameter and nondimensional value RPL of Rayleigh’s quotient.
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1 2 d Moo 4 5

Fig. 4. A three-degree-of-freedom spring-bar system.

4.2. A three-degree-of-freedom spring-bar system

Consider next a three-degree-of-freedom system as shown in Fig. 4 which is supported in the y-direction
atnodes 1 and 4, and in x-direction at the center. Note that the support at the center similar to that in Fig. 1
has been omitted for brevity in Fig. 4, and this system is symmetric with respect to the y-axis. The ex-
tensions of the springs a, b, ¢ are defined as

ea = L(q1 + q2), (59)

ey = L1 — q2), (60)

e = L(q1 + q3) (61)
and the change of the angle of the spring d is given as

04 = 2q3, (62)
where the generalized displacements ¢, ¢», g5 are the coefficients for the three modes defined as shown in
Fig. 5.

The strain energy of each spring is given as

E, :%Alei—i—%Blei—&—;—“Cleg, (63)

By = 34ie; +iBiey +5;,Ciey, (64)

Ey, = 34se, +Baey +5;Cae, (65)

Eq =1D03, (66)
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Fig. 5. Displacement mode of the three-degree-of-freedom spring-bar system.

where A, D, etc. are constants. The relative displacement v in the x-direction between nodes 1 and 5 is given
as

v=Llqt +2q3 + ¢; + (g1 + 245 + 43)]. (67)
By successively differentiating the total potential energy V = E, + E, + E. + E4 — APv with respect to ¢y, ¢,
and g3, and by substituting the obvious solution ¢; = g, = g3 = 0 of the fundamental equilibrium path, the
following relations are derived:

St =24, + 4, —24PL,

Si3 = 831 = 4y,

Sy =24, —2APL,

Sy =A4;+4D —2APL,

Si2 =81 =83 =8» =383 =0.

~ N /N~
N N D
S O o
N NG NN N

~J
\9]

-
—_

The third differential coefficients are

S\ = 3By, (73)
Sy = 2By, (74)
S311 = S331 = S333 = By, (75)

where symmetry in the differentiation such as Sy; = Sy = S is to be used, and the remaining compo-
nents are equal to 0. Note that this system is not semi-symmetric.
By carrying out eigenvalue analysis for §j;, the critical load factors are found as

A
cl 1
= — 6
SPL’ (76)
1
A? =—[24, +2D —
2PL[ 1 + c]) (77)
where
c= \/2(,41)2 — 44,D + 4D2. (78)

Therefore two load factors coincide if

A, = 8D. (79)
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The parameter 4, is chosen as design variable; i.e., ¢ = 4;. From (76a,b), the sensitivity coefficients of A°!
and A are written as

, 1
cl”
=3P (80)
, 1 1
2" _ _
A% = 2o |1 =52 (24, —4D) . (81)

The package Maple V has also been used for symbolic computation. The two lowest eigenvectors of [S;;] are
given as

0 dje
{1} =41 {#3}=4 0 5, (82)
0 1/e
where
—A1—|—2D—C
gD (83)

e=Vd+1. (84)

Then Eq. (56) is reduced to

2 0 a | ye|4PL 0 a
0 1%(2/1149)]{‘12}/1 [ 0 2PLHa2} (85)

and the same results as Eqgs. (80) and (81) are derived.

5. Conclusions

A new formulation has been presented for sensitivity analysis of coincident buckling load factor of
symmetric systems with respect to symmetric design modification. A weak condition is introduced for
defining a symmetric system. In this definition, the prebuckling deformation should be orthogonal to all the
buckling modes corresponding to the coincident critical point.

A new concept called completely minor imperfection has also been introduced for symmetric systems with
coincident bifurcation points. For a completely minor imperfection, the condition for the minor imper-
fection is to be satisfied by all the coincident buckling modes, and the sensitivity coefficients of a coincident
critical load factor are bounded if a completely minor imperfection is considered. A symmetric design
modification corresponds to a completely minor imperfection if the system is symmetric.

The formulation for sensitivity analysis of a simple bifurcation load factor with respect to minor im-
perfection has been extended to the case of coincident buckling. It has been shown that sensitivity analysis
of coincident bifurcation load factor can be carried out in a similar manner as multiple linear buckling load
factor. The directional derivatives are computed by solving an eigenvalue problem for obtaining the proper
choice of the coefficients for the eigenmodes.

Detailed formulations have been presented for a two-degree-of-freedom spring-bar system to illustrate
the validity of the proposed formulations. It has been shown that subgradients may be found by incor-
porating arbitrary set of the coefficients into the Rayleigh’s quotient. Since this is a special case where all the
buckling load factors coincide, applicability for a general case has been demonstrated by a three-degree-of-
freedom spring-bar system.
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Application of the proposed method to finite dimensional models with moderately large degree of
freedom is to be in a similar manner as shown in the examples in Ohsaki and Uetani (1996). If the un-
deformed state is taken as the reference configuration for defining the strains, the third order differential
coefficients of the total potential energy with respect to the displacements can be easily obtained by using
appropriate package of symbolic computation, if necessary.
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